PHYSICAL / INORGANIC CHEMISTRY

DPP No. 18

Total Marks: 30

Max. Time: 41 min.

Topic: Ionic Equilibrium

Type of Questions

M.M., Min.

Single choice Objective ('-1' negative marking) Q.1 to Q.2 $\,$

(3 marks, 3 min.) [6, 6]

Subjective Questions ('-1' negative marking) Q.3 to Q.8

(4 marks, 5 min.) [24, 35]

1. 18 ml of mixture of acetic acid and sodium acetate required 6ml of 0.1 M NaOH for neutalization of the acid and 12 ml of 0.1 MHCl for reaction with salt, separately. If pK_a of the acid is 4.75, what is the pH of the mixture? [log2 = 0.3]

(A) 5.05

(B) 4.75

(C) 4.5

(D) 4.6

Blood is buffered with CO_2 and HCO_3^- . What is the ratio of the base concentration to the acid (i.e. CO_2 (aq.) plus H_2CO_3) concentration to maintain the pH of blood at 7.4 ? The first dissociation constant of H_2CO_3 ($H_2CO_3 \leftarrow H^+ + HCO_3^-$) is 4.2×10^{-7} where the H_2CO_3 is assumed to include CO_2 (aq.) i.e., dissolved CO_2 . ($log\ 2 = 0.3$, $log\ 3 = 0.48$, $log\ 7 = 0.85$, antilog1.06 = 11.5)

(A) 10.7

(B) 1.8

(C) 10

(D) 12

3. Calculate hydrolysis constants for each of the following salt solutions. Compute also the pH of the solution and the percentage of hydrolysis.

(i) 0.05 M NaAc;

 $K_a(HAc) = 2 \times 10^{-5}$.

(ii) 0.008 M NH, CI;

 $K_{b}(NH_{3}) = 2 \times 10^{-5}$.

(iii) 0.5 M Na₂S;

 $K_3(HS^-) = 1.0 \times 10^{-15} [\log (0.475) = -0.32].$

(iv) 0.64 M KCN:

 K_a (HCN) = 4.0 × 10⁻¹⁰.

- (v) 0.40 M NH, Ac
- (vi) 0.003 M NH₄ CN
- 4. Calculate pH of the buffer solution containing 0.15 moles of NH_4OH and 0.25 moles of NH_4CI . K_b for NH_4OH is 2 × 10⁻⁵.
- 5. Determine the concentration of H_3O^+ ion in a mixture of 0.06 M $CH_3COOH \& 0.04$ M CH_3COONa at 25°C, dissociation constant of $CH_3COOH = 1.84 \times 10^{-5}$.
- 6. Calculate the hydrogen ion concentration in a solution containing 0.04 mole of acetic acid and 0.05 moles of sodium acetate in 500 ml of the solution. Dissociation constant for acetic acid is 1.8×10^{-5} .
- 7. Calculate the pH of solution of given mixtures. [log (1.8) = 0.26]
 - (a) 2 gm CH₃ COOH + 4.1 gm CH₃ COONa in 100 ml of mixture, $K_a = 1.8 \times 10^{-5}$.
 - **(b)** 5 ml of 0.1 M NH₄OH + 250 ml of 0.1 M NH₄Cl , $K_b = 1.8 \times 10^{-5}$.
- 8. Calculate the moles of pyridinium chloride (C_6H_5 NHCI) which should be added to 500 ml solution of 0.4 M pyridine (C_5H_5 N) to obtain a buffer of pH = 5 , K_5 for pyridine is 1.5 × 10⁻⁹ .

Answer Key

DPP No. #18

1. (A) 2. (A)

(vi)

1.25

- 3. %Hydrolysis pH 5 × 10-10 8.7 (i) 0.01% (ii) 5 × 10-10 5.7 0.025% (iii) 10.0 13.68 95% 2.5 × 10⁻⁵ 11.60 (iv) 0.625% 2.5 × 10-5 7.0 0.5% (v)
- **4.** 9.08 **5.** $2.76 \times 10^{-5} \text{ mol Lt}^{-1}$. **6.** $1.44 \times 10^{-5} \text{ M.}$ **7.** (a) 4.92 (b) 7.56

52.8%

0.3 mole of C_sH_sNHCl should be added to 500 ml solution of C_sH_sN.

9.35

Hints & Solutions

PHYSICAL / INORGANIC CHEMISTRY

DPP No. #18

- 1. From the information, $\frac{[\text{salt}]}{[\text{acid}]} = 2$; so, pH = pKa + log $\frac{[\text{salt}]}{[\text{acid}]} = 5.05$.
- 2. $7.4 = (7 \log 4.2) + \log \frac{[B]}{[A]} \Rightarrow \log \frac{[B]}{[A]} = 1.03 \Rightarrow \frac{[B]}{[A]} = 10.7$

3.
$$K_h$$
 pH %Hydrolysis 5×10^{-10} 8.7 0.01%

(i)
$$5 \times 10^{-10}$$
 8.7 0.01%
(ii) 5×10^{-10} 5.7 0.025%
(iii) 10.0 13.68 95%
(iv) 2.5×10^{-5} 11.60 0.625%
(v) 2.5×10^{-5} 7.0 0.5%
(vi) 1.25 9.35 52.8%

$$1.84 \times 10^{-5} = \frac{0.04}{0.06} \times [H^+].$$

$$[H^+] = \frac{3}{2} \times 1.84 \times 10^{-6} = 2.76 \times 10^{-6} \,\mathrm{M}.$$

8.
$$pOH = pK_b + log \frac{[n_{salt}]}{[n_{acid}]}$$

Since,
$$pH = 5$$
; $pOH = 9$.

$$9 = 8.824 + \log \frac{[n_{salt}]}{0.2 \text{mol}}$$
.

$$0.176 = \log \frac{[n_{\text{salt}}]}{0.2 \text{mol}}$$

$$[n_{salt}] = 0.3$$
 mole.